

Overview of new concepts for Thermal Protection System technologies

Alan Viladegut

IS OCTOBER 2024 BE-US JOINT EFFORT IN SCIENCE FOR A SAFER WORLD

ROYAL MILITARY ACADEMY BRUSSELS

 (\bigcirc)

Why do we need TPS?

Velocity at start of re-entry:	10 km/s
Re-entry altitude:	100 km
Capsule mass:	3500 kg
Re-entry time:	10 minutes

~180 MW of power to be dissipated

FORGING THE FUTU

Nature of the heating at high speeds

FOR FLUID DYNAMICS

3

URE SCIENCE FOR A SAFER WORLD TRUINE SCIENCE FOR A

Expertise at the von Karman Institute

Experimental & Numerical work:

- Gas-surface interaction,
- Plasma diagnostics,
- Heat transfer,
- Demise of space debris,
- Black-out mitigation

4

Thermal Protection System strategies

MHD Cooling

Electron Transpiration Cooling (ETC)

Temperature reduction at SP by thermionic emission, Power generation for aircraft systems

Plasma Sheath modelling for hypersonic vehicle design

Hanquist Kyle M., Boyd Iain D. Plasma Assisted Cooling of Hot Surfaces on Hypersonic Vehicles Frontiers in Physics, 2019

CFD simulations show the potential of thermionic emission to reduce surface temperatures

Electron Transpiration Cooling (ETC)

Credit: V. Lafaurie (RM)

Challenges of ETC testing

Plasma conductivity around electrodes (w/o ETC)

Non-symmetric probe

Substract background currents from the plasma to relate to ETC

Space-charge limitation

Electron & Heavy particle collision @ high P

Work function will differ from theoretical values

Electron Transpiration Cooling (ETC)

Proposed transversal research activity:

Thermal Protection System strategies

MHD Cooling

BE-US DOINT EFFORT IN SCIENCE FOR A SAFER WORLD

Magnetic shielding for entry systems

He Cryogenic system

1st MHD experiment in VKI Plasmatron:

von KARMAN INSTITUTE

FOR FLUID DYNAMICS

10

We should go to supersonic plasma to increase F_L

Magnetic shielding for entry systema

Tests performed at IRS (Stuttgart) in PWK1 (w/ RD5) show a shock displacement with B-field

11

Radio blackout mitigation

Communications can be interrupted by flow ionization

Ramjatan et al., "Blackout Analysis of Reentry Vehicles for Martian Missions", IPPW-15, Colorado 2018

Radio black-out mitigation

Communication test was performed in MEESST project

Radio blackout mitigation

Proposed research activity:

- Tests can be done in subsonic and supersonic,
- Possibility to measure heat flux with the 3rd probe from the top of the chamber,
- Reduce distance between antennas to reduce influence

of signal reflections

Flight test case

- Probe B-field configuration like in MEESST (to reduce HF at stagnation point),
- Antenna at off-stagnation point to simulate leeside of the capsule.

Overview of new concepts for Thermal Protection System technologies

Alan Viladegut Email: alan.viladegut@vki.ac.be, Phone: +32 (0)2 359 96 56, www.vki.ac.be

2000

IS OCTOBER 2024 BE-US JOINT EFFORT IN SCIENCE FOR A SAFER WORLD

ROYAL MILITARY ACADEMY BRUSSELS

 (\bigcirc)

